

AI/ML Storage: Distributed vs Centralized Architectures

RESEARCH

Multi-Vendor Webinar Tuesday August 17, 2021

G2M Research Introduction and Ground Rules

Mike Heumann Managing Partner, G2M Research

Webinar Agenda

- **9:06-9:30** Sponsoring Vendor presentations on topic (10 minute each)
- **9:31-9:36** Panel Discussion Question #1
- **9:37-9:37** Audience Survey #1
- **9:38-9:43** Panel Discussion Question #2
- **9:44-9:44** Audience Survey #2
- **9:45-9:50** Panel Discussion Question #3
- **9:51-9:58** Audience Q&A (8 minutes)
- 9:59-10:00 Wrap-Up

Artificial Intelligence and Storage

- Artificial Intelligence (AI) and Machine Learning (ML) have unique storage needs
 - Extremely large datasets for learning (up to or over PB in size)
 - Large datasets for model validation
- Training and validation datasets must be cataloged and archived for future analysis
 - Exploring the impact of model changes on previous datasets
- The "live" data lake must have an extremely fast connection to compute resources

AI/ML Storage Architectures

- Most storage vendors are now optimizing their architectures for AI workloads
- Both cloud and on-prem solutions are now available for AI workloads
- These systems must provide large, scalable storage with high performance
- These storage architectures must also be able to provide data management to store training data sets and training results

Kirill Shoikhet **Chief Technical Officer** www.excelero.com

www.aicipc.com

G2M RESEARCH

Mike Heumann **Principal Analyst** www.g2minc.com

Weka for Distributed Al Storage

Shimon Ben David Chief Technology Officer

WELCOME TO WEKA

Our Mission

Make storage a utility by delivering simplicity, speed, scale, and better economics

8 of the Fortune 50 are customers

Backed By Industry Leaders

alata **Hewlett Packard** O. cisco Enterprise **DVIDIA**

Mellanox^a

WEKA[®] proprietary and confidential | 2020

Existing Problem: Multi-Copy Architecture

Before Weka

- 1. High cost of infrastructure (Need of multiple systems to store and run data)
- 2. Slow time for data to become actionable
- Limited scalability

 (cold data needs to be moved to different systems - additional software required)
- 4. High management overhead (multiple systems need to be purchased, managed, powered, cooled & housed in Data Centers)

Solution: Zero-Copy Architecture

After Weka

- 1. Collapse into single system, reducing infrastructure costs by up to 75%
- 2. 95% 98% reduction in time for data to be actionable (first to market advantage)
- Immense scalability up to 14EB's in single namespace (no additional software needed)
- 4. 20x reduction in management overhead

WekaFS PERFORMANCE

HIGH-SPEED NETWORK SATURATION

162GB/Sec & 1M IOPs Performance to a Single GPU client

MASSIVE SINGLE CLIENT PERFORMANCE

	DAS	SAN	NAS	WekaFS	
Benchmark	(Optane SSD Server)	(NVMe-oF)	(All-Flash)	(HPE NVMe Servers)	
100T.YR1VWAB-12D-HO	15633	1886	4183	1028	
100T.YR2VWAB-12D-HO	18114	1418	3294	892	
100T.YR3VWAB-12D-HO	20730	1910	4773	1141	FINANCE.
100T.YR4VWAB-12D-HO	24741	3317	7037	1550	
100T.YR5VWAB-12D-HO	36888	22389	11376	4808	ANALYIIC
10T.YR2-MKTSNAP	176	355	6898	655	DEDEODU
10T.YR3-MKTSNAP	176	358	7855	675	PERFORM
10T.YR4-MKTSNAP	149	375	8531	711	
10T.YR5-MKTSNAP	155	393	8684	726	
1T.2YRHIBID	645	374	1419	309	- 4Y FAS
1T.3YRHIBID	1129	630	2737	480	
1T.4YRHIBID	1957	1082	4881	804	FI ΔSH
1T.5YRHIBID	3234	1804	8589	1234	I LAJII
1T.OLDYRHIBID	61	46	129	48	
1T.YR1VWAB-12D-HO	334	226	545	294	
1T.YR2VWAB-12D-HO	394	268	632	355	- 4.5XF
1T.YR3VWAB-12D-HO	462	347	750	430	\A/IT11
1T.YR4VWAB-12D-HO	553	517	928	547	WIIT
1T.YR5VWAB-12D-HO	841	769	1298	732	
50T.YR1VWAB-12D-HO	1089	1748	4302	2300	
50T.YR2VWAB-12D-HO	1988	1774	4798	1971	- 16X F
50T.YR3VWAB-12D-HO	2865	2278	6253	2409	1.0/1
50T.YR4VWAB-12D-HO	4195	3118	8840	3077	FI ASH
50T.YR5VWAB-12D-HO	6731	4625	13597	4111	. ב/ נסויו
Average Result (lower is better)	5968.33	2166.958	5097.041	1303.625	

Scaling Performance From 1 to 9 DGX-1 Systems

PERFORMANCE SCALES LINEARLY TO MULTIPLE CLIENTS

FINANCE, TICK DATA ANALYTICS APPLICATION PERFORMANCE

4X FASTER THAN ALL-FLASH NAS

4.5X FASTER THAN DAS WITH OPTANE

1.6X FASTER THAN ALL-FLASH ARRAY

WEKA

WEKA® proprietary and confidential | 2020

ACCELERATING AUTONOMOUS DRIVING REVOLUTION

Large Autonomous Vehicle Company Al Project

1.00

Proper storage solution for AI is a far from static

- Research to Production
- On-premises to Cloud to Hybrid
- Containers to Large-scale Kubernetes
- Research datasets to Data Lakes and Data Governance

But storage characteristics should remain stable so there is a delicate balance between

Jack of All Trades, Master of Some

Some real-world AI workload are OK with large IOs and high BW

But there are real-world AI workloads that require low latency

- Efficiently working with small/medium files
- Example: Deep Learning training on images or video fragments

50 Ways to Hide Your Latency:

- High bandwidth numbers using 1MB reads
- Scaling capacity to 10s of PBs to get high IOPS
- Performance benchmarking by obscurity

• ...

8/17/2021

01.0 DO SI

Divide and Conquer

- Cold object storage for data lake
 - Cloud-based solutions bring highest reliability levels
- Fast and efficient storage for the immediate tasks
 - Higher GPU utilization
 - Faster turnaround times
 - Faster convergence
- Intelligent data management
 - There are no shortcuts without tradeoffs

Storage as an Agile Companion

Centralized

Scales easily

Cloud/Hybrid support Scale-out solutions do scale but the scale is often limited

Only in co-located datacenters. Hybrid deployments are challenging

Kubernetes support Container-ready CSI plugin – storage is deployed alongside Kubernetes clusters. Extremely limited mobility

Limiting factor

Disaggregated

Software-defined disaggregated solutions are natively scalable

Allows running on top of public cloud IAAS as well as on-premises. Hybrid deployments are feasible

Container-native deployments. Can run on-premises and on managed Kubernetes offerings on public clouds

Enabling factor

Frequently cited concerns about disaggregated solutions

High/Unpredictable latency

Lack of proper data protection

Difficult to integrate w/ file systems

Setup complexity

Excelero NVMesh[®]

Direct [Application Stack] to [NVMe drives] data path and Client-side Architecture with no East-West traffic ensure

 \rightarrow low and predictable latency across platforms

Multi-node, multi-rack rack distributed RAID10 and Erasure Coding (RAID6) tested on 1000-node clusters

Over 9M file IOPS with IBM Spectrum Scale in SAN mode in just 2 rack units Full line rate bandwidth with 200Gbps and 400Gbps networking

Deploy in minutes via standard package managers on-premises; Kubernetes Operator on K8s clusters; Native deployment mechanisms on public clouds (ARM, CloudFormation, ...)

Predictability Across Environments

Copyright © 2021 G2M Research. All Rights Reserved.

Copyright © 2021 G2M Research. All Rights Reserved.

AIC – Who We Are

- AIC is a leading provider of OEM/ODM and COTS, server and storage solutions
- In-house mechanical, electronic, system-level engineering design teams, thermal & system level validation capabilities and world-class manufacturing
- Products are highly flexible and configurable to any form factor, standard or custom
- Founded in 1996, the Global Headquarter is in Taiwan, with offices and operations throughout the United States, Asia and Europe

AIC – What We Do

Centralized Storage Characteristics

• The characteristics of centralized data storage include:

- One central system, enables universal communications
- Presence of a global clock, synchronizing information

• Advantages of a centralized data system include:

- Consistent system, increases data integrity
- Single location security, including system, data and physical
- Central location facilitates data access & coordination
- Can be less expensive to maintain
- Reduction of distribution, reduces data redundancy
- The data is easily portable
- Single location reduces data retrieval time

• Centralized data system has disadvantages including:

- Catastrophic failure can destroy system and data set
- System down time affects all users
- Issues can occur when all users want to access the data at the same time

Distributed Storage Characteristics

Distributed data storage is characterized by:

- Different systems, each running individual clocks
- Multiple servers or central units

• Advantages of distributed data storage include:

- Since data is spread across physical locations, it can be easily expanded
- It can be accessed from many networks
- Multiple locations provide resiliency
- It has a high-performance capability as the system load is spread over the multiple nodes

Disadvantages include:

- Due to its complexity, it is difficult to maintain
- It can increase management costs
- It may difficult to detect which node has failed hence may take longer to be rectified

8/17/2021

Distributed Processing & Storage

- Storage supplies data to the CPU for processing
- Storage provides data to the CPU, then shipped to the GPU
- Storage provides data to the most efficient compute

AIC Server, Storage & Security Solutions

Copyright © 2021 G2M Research. All Rights Reserved.

Why AIC?

• Design Standard Solutions to Complex Systems

- Experienced Mechanical, Electrical, Software, System Level and Thermal engineering teams design from PCBA to enormous test chambers
- All manufacturing is in Taiwan, not China
- Two Platforms Intel and AMD (PCIe Gen 4)
 - AIC has products released or in design with both Intel (Cascade Lake Refresh & Ice Lake) and AMD (Naples/Rome & Milan) processors
- Complete Systems Unique ability to customize
 - PCIe Gen 4 & Gen 5 Support Riser cards can be redesigned for frequency modifications
 - BIOS Customization Ability to access the BIOS source code for customization
 - Configurability & Routing of PCIe Lanes AIC's MAX I/O technology can manage the PCIe lanes individually or as a group to meet the design requirements
 - Design excels at accommodating unique requirement for additional cards like SmartNICs, GPUs, Frame Grabbers, etc.
 - Short/small footprint multi-node high density systems
 - FIPS/NEBs compliant designs
- Extended Life Cycle 5-7 years, with extended support, some products having 10+ years
- **Demand Creation** Partner with customers to create customer awareness & demand

Engineering, Design and Manufacturing

jkimpler@aicipc.com

Panel Questions and Audience Surveys

Panel Question #1

What is the right approach to determining how much storage capacity goes into a particular storage node?

- Shimon Ben David Weka
- Kirill Shoikhet Excelero
- Joe Kimpler AIC

G

Audience Survey Question #1

How big is your largest AI/ML storage pool today? (check one):

 1PB or greater: 	12%
 Between 250TB and 1PB: 	9%
 Between 100TB and 250TB: 	6%
 Between 25TB and 100TB: 	6%
Less than 25TB:	21%
 Don't know/no opinion: 	47%

G

Panel Question #2

How do you balance the needs of long-term storage for archived datasets vs datalake storage for training?

- Kirill Shoikhet Excelero
- Joe Kimpler AIC
- Shimon Ben David Weka

Audience Survey Question #2

How much cloud storage capacity do you use for AI/ML today? (check one):

 Greater than 5PB of cloud storage: 	8%
 1PB to 5PB of cloud storage: 	0%
 100TB to 1PB of cloud storage: 	13%
 Less than 100TB of cloud storage: 	13%
 We don't use cloud storage for AI/ML: 	29%
 Don't know 	38%

 \mathbf{N}

G

Panel Question #3

NVMe is clearly the fastest flash storage technology today. Where does it fit in the ecosystem of AI/ML storage solutions?

- Joe Kimpler AIC
- Shimon Ben David Weka
- Kirill Shoikhet Excelero

Thank You For Attending!